Dickson Invariants in the Image of the Steenrod Square

نویسنده

  • KAI XU
چکیده

Let Dn be the Dickson invariant ring of F 2 [X 1 ,. .. , Xn] acted by the general linear group GL(n, F 2). In this paper, we provide an elementary proof of the conjecture by [3]: each element in Dn is in the image of the Steenrod square in F 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A-generators for Ideals in the Dickson Algebra

The Dickson Algebra on q-variables is the algebra of invariants of the action of the mod-2 general linear group on a polynomial algebra in q-variables. We study the structure of certain ideals in this algebra as a module over the Steenrod Algebra A, and develop methods to determine which elements are hit by Steenrod operations. This allows us to display a very small set of A-generators for thes...

متن کامل

Computation of Cubical Steenrod Squares

Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in R. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher tha...

متن کامل

Global structure of the mod two symmetric algebra , H ∗ ( BO ; F 2 ) , over the Steenrod Algebra

The algebra S of symmetric invariants over the field with two elements is an unstable algebra over the Steenrod algebra A, and is isomorphic to the mod two cohomology of BO , the classifying space for vector bundles. We provide a minimal presentation for S in the category of unstable A-algebras, i.e., minimal generators and minimal relations. From this we produce minimal presentations for vario...

متن کامل

Notes on some Distance-Based Invariants for 2-Dimensional Square and Comb Lattices

We present explicit formulae for the eccentric connectivity index and Wiener index of 2-dimensional square and comb lattices with open ends. The formulae for these indices of 2-dimensional square lattices with ends closed at themselves are also derived. The index for closed ends case divided by the same index for open ends case in the limit N →&infin defines a novel quantity we call compression...

متن کامل

On the X basis in the Steenrod algebra

‎Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra‎, ‎where $p$ is an odd prime‎, ‎and let $mathcal{A}$ be the‎ subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers‎. ‎We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000